1 ## **INTER PARTES** REEXAMINATION CERTIFICATE THE PATENT IS HEREBY AMENDED AS INDICATED BELOW. Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the patent; matter printed in italics indicates additions made to the patent. AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT: Claims 2, 5, 7, 9, 21, 23, 25, 26, 30, 33, 42, 44 and 51 are 15 cancelled. Claims 1, 15, 16, 28, 39 and 43 are determined to be patentable as amended. Claims 3, 4, 6, 8, 10-14, 17-20, 22, 24, 27, 29, 31, 32, 20 the memory module comprising: 34-38, 40, 41 and 45-50, dependent on an amended claim, are determined to be patentable. New claims 52-91 are added and determined to be patentable. - 1. A memory module connectable to a computer system, 25 the memory module comprising: - a printed circuit board; - a plurality of double-data-rate (DDR) memory devices mounted to the printed circuit board, the plurality of DDR memory devices having a first number of DDR 30 memory devices arranged in a first number of ranks; - a circuit mounted to the printed circuit board, the circuit comprising a logic element and a register, the logic element receiving a set of input control signals from the computer system, the set of input control signals com- 35 prising at least one row/column address signal, bank address signals, and at least one chip-select signal, the set of input control signals corresponding to a second number of DDR memory devices arranged in a second number of ranks, the second number of DDR memory 40 devices smaller than the first number of DDR memory devices and the second number of ranks less than the first number of ranks, the circuit generating a set of output control signals in response to the set of input control signals, the set of output control signals corre- 45 sponding to the first number of DDR memory devices arranged in the first number of ranks, wherein the circuit further responds to a first command signal and the set of input control signals from the computer system by generating and transmitting a second com- 50 mand signal and the set of output control signals to the plurality of memory devices, the first command signal and the set of input control signals corresponding to the second number of ranks and the second command signal and the set of output control signals correspond- 55 ing to the first number of ranks; and - a phase-lock loop device mounted to the printed circuit board, the phase-lock loop device operatively coupled to the plurality of DDR memory devices, the logic element, and the register, 60 - wherein, in response to signals received from the computer system, the phase-lock loop (PLL) device transmits a PLL clock signal to the plurality of DDR memory devices, the logic element, and the register, - wherein, the register (i) receives, from the computer 65 system, and (ii) buffers, in response to the PLL clock signal, a plurality of row/column address signals and 2 the bank address signals, and (iii) transmits the buffered plurality of row/column address signals and the buffered bank address signals to the plurality of DDR memory devices, wherein the at least one row/column address signal received by the logic element comprises at least one row address signal received by the logic element, and wherein the plurality of row/column address signals received by the register are separate from the at least one row address signal received by the logic element, and wherein the logic element generates gated column access strobe (CAS) signals or chip-select signals of the output control signals in response at least in part to (i) the at least one row address signal, (ii) the bank address signals, and (iii) the at least one chip-select signal of the set of input control signals and (iv) the PLL clock signal. 15. A memory module connectable to a computer system, - a printed circuit board; - a plurality of double-data-rate (DDR) memory devices coupled to the printed circuit board, the plurality of DDR memory devices having a first number of DDR memory devices arranged in a first number of ranks; - a circuit coupled to the printed circuit board, the circuit comprising a logic element and a register, the logic element receiving a set of input signals from the computer system, the set of input signals comprising at least one row/column address signal, bank address signals, and at least one chip-select signal, the set of input signals configured to control a second number of DDR memory devices arranged in a second number of ranks, the second number of DDR memory devices smaller than the first number of DDR memory devices and the second number of ranks less than the first number of ranks, the circuit generating a set of output signals in response to the set of input signals, the set of output signals configured to control the first number of DDR memory devices arranged in the first number of ranks, wherein the circuit further responds to a command signal and the set of input signals from the computer system by selecting one or two ranks of the first number of ranks and transmitting the command signal to at least one DDR memory device of the selected one or two ranks of the first number of ranks; - a phase-lock loop device coupled to the printed circuit board, the phase-lock loop device operatively coupled to the plurality of DDR memory devices, the logic element, and the register, - wherein, in response to signals received from the computer system, the phase-lock loop (PLL) device transmits a PLL clock signal to the plurality of DDR memory devices, the logic element, and the register, - wherein, the register (i) receives, from the computer system, and (ii) buffers, in response to the PLL clock signal, a plurality of row/column address signals and the bank address signals, and (iii) transmits the buffered plurality of row/column address signals and the buffered bank address signals to the at least one DDR memory device of the selected one or two ranks of the first number of ranks, wherein the at least one row/ column address signal received by the logic element comprises at least one row address signal received by the logic element, and wherein the plurality of row/ column address signals received by the register are